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A B S T R A C T

Semi-supervised domain adaptation (SSDA) aims to bridge source and target domain distributions, with a
small number of target labels available, achieving better classification performance than unsupervised domain
adaptation (UDA). However, existing SSDA work fails to make full use of label information from both source
and target domains for feature alignment across domains, resulting in label mismatch in the label space
during model testing. This paper presents a novel SSDA approach, Inter-domain Mixup with Neighborhood
Expansion (IDMNE), to tackle this issue. Firstly, we introduce a cross-domain feature alignment strategy, Inter-
domain Mixup, that incorporates label information into model adaptation. Specifically, we employ sample-level
and manifold-level data mixing to generate compatible training samples. These newly established samples,
combined with reliable and actual label information, display diversity and compatibility across domains,
while such extra supervision thus facilitates cross-domain feature alignment and mitigates label mismatch.
Additionally, we utilize Neighborhood Expansion to leverage high-confidence pseudo-labeled samples in the
target domain, diversifying the label information of the target domain and thereby further increasing the
performance of the adaptation model. Accordingly, the proposed approach outperforms existing state-of-the-art
methods, achieving significant accuracy improvements on popular SSDA benchmarks, including DomainNet,
Office-Home, and Office-31.
1. Introduction

Domain adaptation (DA) aims to first train an adaptation model
from label-rich datasets (a.k.a source domain) and then transfer the
learned knowledge to a new but label-scarce dataset (a.k.a target
domain) of different distribution so as to avoid relying largely on the
human-annotated in-distribution data. Nowadays, application scenarios
of DA include semantic segmentation [1], object detection [2], person
re-identification [3], and so on. Unfortunately, a direct application of
such models trained on the source domain dataset to the target domain
would cause severe performance degradation due to different data
distributions in these two domains. The commonly defined DA setting,
unsupervised domain adaptation (UDA), witnesses great progress in the
reduction of domain shift [4]. Nevertheless, compared with UDA, semi-
supervised domain adaptation (SSDA), where a small number of target
labels are available, achieves much better performance on the target
domain. This is because supervision on a few labeled target domain
samples, as well as a large number of labeled source domain samples,
is already capable of bridging partial distribution discrepancies across
domains [5,6].

Previous approaches for the SSDA problem extract domain-invariant
features mainly by minimizing cross-domain discrepancy measures [7],
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relying on image style transfer [8] or adversarial training [5,6,9]. They
can achieve domain alignment so that, in theory, or in hypothesis, the
adapted classifier is prone to obtain good classification performance in
the target domain. However, these strategies to enforce domain-level
feature alignment may fail to generate discriminative target features for
two main reasons. First, the source domain has a much larger number
of labeled samples than the target domain when we perform supervised
learning using labeled samples across domains. Thus, features of la-
beled target domain samples do not have the same level of diversity
as those of source domain samples [6,10], impairing their discrim-
inability. In addition, the majority of previous strategies performed to
cross-domain feature alignment neglect label information from either
the source or target domain for adaptation and the model consequently
cannot align sample features from both domains according to their
class labels [11]. As a result, as shown in Fig. 1, domain-invariant yet
non-discriminative features generated from the model are used to align
different categories, thereby giving rise to cross-domain label mismatch
in the label space [12]. To alleviate this issue, existing label-free
feature alignment strategies have to impose more crafted constraints on
the target domain [6,7,13]; nevertheless, unsupervised learning based
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Fig. 1. A conceptual description of our basic idea. Sample points in brown, green, and red represent source domain data, target domain data, and class prototypes, respectively.
Arrows in purple indicate that sample points move towards the prototype of Class 1, while blue arrows illustrate that the prototype of Class 2 attracts samples from the corresponding
class towards itself. Left: Previous label-free strategies to enforce domain-level feature alignment fail to generate discriminative target features, thereby giving rise to cross-domain
abel mismatch in label space. Middle: Our approach incorporates label information into adaptation, and thus, the model can align class-wise sample features from both domains
ith the aid of their class labels. Right: The proposed approach enables the model to produce domain-invariant and discriminative features and thus enhance the performance of

he model.
egularization is not necessarily beneficial to label mismatch rectifica-
ion, but on the contrary, may make it worse. For example, entropy
inimization in [5], or self-training in [6], seeks to learn knowledge

rom the model predictions themselves, which is risky due to label
oise accumulation [14] and poor model calibration [15]. Hence,
ecent advances, such as [8,16], have proposed label-aware alignment
trategies for cross-domain feature distributions. which considers the
ngratiation of label information into adaptation, thereby effectively
itigating the aforementioned issues. However, these alignment strate-

ies overlook the potential to delve deeper into the provided labeled
ource and target domains to excavate more definitive and authentic su-
ervised label information. Such exploration of a broader cross-domain
earch scope could better bridge distribution discrepancies between
omains, thereby encouraging the model to generate domain-invariant
et discriminative features on the target domain.

This paper proposes a novel label-aware cross-domain feature align-
ent strategy, namely Inter-domain Mixup, where label information is

ncorporated into model adaptation. Specifically, Inter-domain Mixup
onducts sample-level data mixing and manifold-level data mixing
etween paired labeled samples from the source and target domains.
n detail, sample-level data mixing directly mixes the source images
nd target images and their corresponding labels through linear combi-
ations of existing labeled samples; on the other hand, manifold-level
ata mixing creates virtual samples with convex combinations of the
eatures (outputs at the penultimate layer of the model) along with
heir labels from the source-target sample pairs from labeled data.
hus, many virtual training samples with reliable label information
re created. These newly established samples along with their labels
onnect both domains and are both diverse and complementary to
oth domains. We, hence, perform supervised learning using these
abeled virtual samples so as to mitigate the discrepancy between the
ource and target domains. As a result, the generated features are
gnostic to the distribution discrepancies between the two domains,
nd meanwhile, exhibit class discriminability.

As introduced above, Inter-domain Mixup makes full use of label
nformation from the labeled samples to enforce label-aware feature
lignment across domains. However, there is only a very small amount
f labeled data in the target domain, which seriously hinders the
otential of cross-domain fusion because the diversity of samples in
he target domain is not reflected in data mixing. As the model’s
eneralization ability continues to improve during the training process,
or unlabeled samples highly correlated to labeled ones, their predicted
abels may become increasingly reliable. Like label propagation for
emi-supervised learning [17], to better leverage unlabeled samples in
he target domain, we introduce Neighborhood Expansion to transfer
2

existing label information to unlabeled samples. Specifically, we per-
form label propagation via pseudo labeling to progressively produce
pseudo class labels for unlabeled target domain samples that have
high-confidence model predictions for the corresponding classes. In
the meantime, two schemes, i.e., Self-Regularization and Pairwise Ap-
proaching, are presented to reduce the uncertainty of model predictions
at unlabeled samples in the target domain, which benefits the model in
producing low-entropy and high-confidence predictions.

We call this SSDA framework Inter-domain Mixup with Neighbor-
hood Expansion (IDMNE). In a nutshell, the main contributions of our
proposed method can be summarized as follows:

• Inter-domain Mixup, a novel cross-domain feature alignment
strategy, is proposed to conduct sample-level and manifold-level
data mixing for source-target sample pairs from labeled data,
which not only facilitates cross-domain feature alignment but also
alleviates label mismatch simultaneously to address cross-domain
distribution discrepancies and thus achieve a considerable perfor-
mance gain for model adaptation.

• Neighborhood Expansion is proposed to leverage massive high-
confidence pseudo-labeled target domain samples to diversify
the label information of the target domain. Moreover, Neigh-
borhood Expansion includes Self-Regularization and Pairwise Ap-
proaching, which reduce the uncertainty of model predictions at
unlabeled target domain samples in order to make them more
confident.

• Inter-domain Mixup and Neighborhood Expansion are integrated
into an adaptation framework, and numerous experiments show
our proposed method can outperform existing state-of-the-art
approaches and achieve considerable accuracy improvement on
three commonly used benchmark datasets such as Domain-
Net [18], Office-Home [19] and Office-31 [20].

2. Related work

2.1. Domain adaptation

Deep neural networks (DNNs) do well in learning discriminative
representations for input data by resorting to a considerable amount
of labeled data, which is extremely expensive and time-consuming to
obtain. Recently, a vast number of domain adaptation techniques [21–
24] attempted to design good adaptation models in order to train with
the source domain data with rich labels and the target domain data with
scarce labels to realize the accurate recognition of the target domain
data.
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In general, DA requires addressing huge domain shifts by learning
to align cross-domain feature representations. Mainstream DA methods
consider learning domain-invariant knowledge by constructing vari-
ous statistical measures to represent domain discrepancy and then
decreasing it, such as Maximum Mean Discrepancy (MMD) [25] and its
modified versions [26–28]. For instance, Long et al. [26] introduced
a deep adaptation network to minimize MMD over multiple domain-
specific feature representation layers so as to learn more transferable
features. Also, JMMD proposed in [27], inherited from conventional
MMD, was employed to enforce cross-domain joint distribution align-
ment on domain-specific layers, while CMD used in [28] performed
order-wise matching in higher-order feature distributions.

Adversarial training, which is employed to confuse the discrimi-
nator in a two-player min–max manner to learn cross-domain feature
alignment, is another effective way for aligning feature distributions
across domains [4,6,29,30]. In particular, Ganin et al. in [4] introduced
a gradient reversal layer into the adaptation framework so that a classi-
fier and a discriminator can be responsible for two tasks, namely, object
classification and domain classification. The former trains the classifier
over source domain data while the latter learned domain-invariant
feature representations across domains by fooling the discriminator.
Also, Tang et al. [29] proposed discriminative adversarial learning to
carry out domain alignment at both the feature level and category level.

Furthermore, several recent work [31,32] also consider image style
transfer across domains to bridge visual domain differences as DNN
is sensitive to the style of image inputs as pointed out in [33]. For
instance, Kim et al. [31] introduced a style transfer algorithm to stylize
the source domain to adapt the target domain so as to diversify the
texture of synthetic images. Also, Adversarial Style Mining proposed
in [32] explored complex styles for an unseen target domain to en-
hance the adaptation performance in a data-scarce scenario. What’s
even more, other studies [34,35] have focused on addressing negative
transfer to improve the adaptation capability of models for the target
domain. Specifically, Lu et al. in [34] proposed weighted correlation
embedding learning to specifically address what should be transferred
for a given task, thereby avoiding negative transfer caused by distribu-
tion outliers. In addition, Lu et al. in [35] introduced guided discrimina-
tion and correlation subspace learning for cross-domain image classifi-
cation, which accounts for domain-invariant, category-discriminative,
and correlation-based learning of data. Last but not least, Lu et al.
in [36] also put forward a method called cross-domain structure learn-
ing (CDSL) for recognizing visual data in the target domain. CDSL
incorporates global distribution alignment and local discriminative
structure preservation to extract common underlying features between
domains.

In practice, domain adaptation has been developed for many new
settings in different application scenarios, such as heterogeneous do-
main adaptation [37], open set domain adaptation [38], partial domain
adaptation [39], etc. In this paper, we focus on the tasks of domain
adaptation related to semi-supervised learning due to its potential
superiority over the commonly defined DA setting, i.e., unsupervised
domain adaptation.

2.2. Semi-supervised domain adaptation

Tremendous progress has been made in cross-domain feature align-
ment by recent DA approaches [5,6,40,41] in order to reduce distri-
bution discrepancies between both domains to some extent. However,
commonly used DA techniques, such as decreasing cross-domain sta-
tistical discrepancy measures, domain adversarial learning, and image
style transfer, etc., can only ensure that the model produces domain-
invariant features, but as label information is not incorporated in
constraining model training, the discriminability of generated features
cannot be guaranteed, thus is of considerable significance in matching
class-wise distributions [42]. Therefore, several recent DA methods [12,
3

30] proposed to impose constraints on the target domain to take
into consideration the class-aware information so as to alleviate label
mismatch across domains, e.g., assigning pseudo-labels for unlabeled
samples in the target domain.

In contrast to the above practice, Saito et al. in [5] directly assumed
that the target domain has a small fraction of ground-truth labels
(typically one-shot or three-shot per class), which achieves significant
performance gains through extra supervision on the target domain.
However, Saito et al. in [5] also demonstrated that a direct application
of traditional UDA techniques to the SSDA problem does harm its effec-
tiveness. Therefore, they proposed Minimax Entropy which optimizes
in an adversarial scheme to minimize the distance between the class
prototypes and neighboring unlabeled target domain samples so as to
achieve domain alignment. This relied heavily on a few target labels
to establish correlations among samples from both domains. Similar
to [5], Qin et al. [9] also introduced an adversarial learning based
method called Contradictory Structure Learning to enforce a target-
classifier and a source-classifier so as to learn well-clustered target
features and well-scattered source features, respectively. In this case,
this method could better align the target distribution with the source
distribution. Li et al. [6] proposed a cross-domain adaptive clustering
algorithm to achieve cluster-wise feature alignment across domains, in
which adversarial learning was also adopted. In addition, APE proposed
in [7] attempted to adopt an attraction scheme to align global feature
distributions across domains and then take on a perturbation scheme
and an exploration scheme to optimize intra-domain discrepancy in
the target domain. Compared to the above feature-level adaptation,
Luo et al. in [8] designed a Relaxed-cGAN to produce new image-label
pairs with class-wise conditional semantic information for pixel-level
adaptation through image transfer, where the information of source
images is ignored.

To sum up, despite the success of previous label-free cross-domain
feature alignment strategies to address the SSDA tasks, most of them
focus on aligning features at the domain level and ignore the label
attribution of samples. In this case, the generated features cannot be
aligned according to their class labels, perhaps giving rise to label
mismatch in the label space. Hence, imposing crafted constraints on
the target domain is crucial for these strategies. Instead, our proposed
Inter-domain Mixup takes advantage of the label information of labeled
samples to learn class-wise feature alignment across domains by incor-
porating them into adapting the model. This ensures samples of diverse
classes are aligned correctly, especially on the target domain.

2.3. Data Mixup

Data Mixup [43] refers to performing convex interpolation on a
pair of labeled samples to generate augmented samples for model
training. It is designed as a regularizer and augments the smoothness
of learned features for supervised learning. Verma et al. [44] extended
it to produce more continuous hidden representations during training.
Recently, Mixup has confirmed its effectiveness in the field of semi-
supervised learning (SSL) [45,46]. For example, Mixmatch augmented
labeled and unlabeled samples for training to smooth the model’s
manifolds [45]. Also, Berthelot et al. [46] enhanced Mixmatch and then
proposed ReMixMatch for training the SSL model to achieve a better
classification performance. As well, Wang et al. [47] used Mixup to
deal with the problem of semi-supervised 3D Medical Image Detection
and obtained a substantial improvement in performance by mixing
medical images at the image level and object level. Afterwards, several
studies [48,49] found the potential of applying Mixup in domain adap-
tation. For instance, Wu et al. [48] proposed two mixup regularizers
at the category and domain levels to instruct the classifier to enforce
the consistency of in-between sample predictions and to enrich feature-
space intrinsic structures. Also, Na et al. presented in [49] augmented
diverse intermediate domains between source-target sample pairs us-
ing a fixed ratio-based mixup regularizer, which successfully bridged

domain spaces so as to alleviate domain discrepancy.
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Fig. 2. An overview of our proposed Inter-domain Mixup with Neighborhood Expansion for semi-supervised domain adaptation. We use arrows with different line styles to represent
data flow, where the black arrow denotes labeled source or target domain data, and the red arrow indicates mixed sample or mixed feature. Our model includes an extractor for
feature generation and a classifier for object classification. Also, we train our model with six loss terms in which 𝒔𝒖𝒑 is for supervision over labeled data from both domains;
𝒔𝒅𝒎 and 𝒎𝒅𝒎 are for Inter-domain Mixup to perform cross-domain class-wise feature alignment; and the remaining 𝒑𝒔𝒓, 𝒏𝒔𝒓 and 𝒑𝒂 are for Neighborhood Expansion to make
unlabeled target domain data more confident. To further leverage unlabeled samples in the target domain, we also employ pseudo labeling to assign pseudo-labels to unlabeled
target domain samples with high probability scores and merge the selected pseudo-labeled target domain samples into the labeled target domain set.
In this paper, we use Data Mixup to establish Inter-domain Mixup,
a novel strategy to perform cross-domain feature alignment for the
SSDA task. The most similar work to our method may be [50–52],
but there are obvious differences. Firstly, our model behaves linearly
within source-target labeled sample pairs whose labels are available
randomly. Instead, [50] requires pairing each target class with a unique
and dedicated source class, i.e., one-to-one pairing from the target to
source classes. In addition, the limitation by the absence of target
labels makes these works namely [50–52] an unsupervised Mixup
approach that lacks actual but diversified supervised label information.
This unsupervised scheme might inadvertently introduce noisy label
information, leading to more serious label mismatch during domain
alignment. Moreover, the features generated in [50–52] lack associated
real label information, thus limiting the classifier’s discriminative effi-
cacy. In contrast, the actual but virtual sample-label pairs constructed
by our proposed method are fed into the classifier for training, thereby
enhancing the classifier’s discriminatory capacity. Also, [51] has been
proposed to effectively address the task of semantic segmentation,
whereas our approach is focused on enhancing the performance of im-
age classification. Most importantly, [50,51] only enforce data mixing
at the sample level but ours conducts convex interpolation at both
sample and manifold levels. Our proposed method encourages the
model to explore more cross-domain searching ranges so as to better
bridge distribution discrepancies between domains. Although [52]
takes feature-level Mixup into account, pursues the approximation of
mixed features to mixup input features through the MSE loss. This
scheme yields a narrower cross-domain search scope, thereby com-
promising the effective bridging of distribution discrepancies across
domains.

3. The proposed method

In this section, we first present the problem formulation and no-
tations in the context of semi-supervised domain adaptation (SSDA),
and then elaborate on our proposed method, i.e., Inter-domain Mixup
with Neighborhood Expansion (IDMNE). An overview of the proposed
method is illustrated in Fig. 2.

3.1. Problem formulation and notation

In the context of SSDA, we are given two sets of labeled samples
in the source and target domains respectively, and a set of unlabeled
samples in the target domain. They can be denoted as 𝑠 = {(𝑥𝑠𝑖 , 𝑦

𝑠
𝑖 )}

𝑁𝑠
𝑖=1,

 = {(𝑥𝑙 , 𝑦𝑙)}𝑁𝑙 and  = {(𝑥𝑢, )}𝑁𝑢 , respectively, where the size of  ,
4

𝑙 𝑖 𝑖 𝑖=1 𝑢 𝑖 𝑖=1 𝑙
i.e., 𝑁𝑙, is much smaller than 𝑁𝑠 and 𝑁𝑢. Specifically, each sample 𝑥𝑠𝑖
(𝑥𝑙𝑖) in the labeled sample set 𝑠 (𝑙) is accompanied with a given label
indexed by 𝑦𝑠𝑖 (𝑦𝑙𝑖). However, for an unlabeled target domain sample
𝑥𝑢𝑖 from 𝑢, we have no access to its associated label. Provided with
the aforementioned information, the goal of this work is to learn an
adaptation model that enables accurate classification of target domain
samples during the testing phase.

Recent SSDA work [5–8,13] has proved that a prototypical classi-
fier is beneficial to feature alignment across domains. Following such
studies, we also construct a model with parameters 𝜃, which consists
of a feature extractor  and a prototypical classifier . The extractor
is a deep neural network followed by an 𝓁2 normalization layer, while
the classifier comprises an unbiased linear layer. According to [5–7],
the weights of such a prototypical classifier can be represented as class
prototypes, i.e., 𝐖 = [𝐰1,… ,𝐰𝑘,… ,𝐰𝐾 ], where 𝑘 = 1, 2,… , 𝐾 indicates
the class index. In this case, a normalized feature  (𝑥)

‖ (𝑥)‖ of a data point 𝑥
is fed into the classifier, meaning that the feature has been mapped into
a spherical feature space [5,7]. Then, the distances between this point
and the class prototypes {𝐰𝑘}𝐾𝑘=1 can be represented as the probabilistic
prediction outputs of the classifier, i.e.,

𝐩 = 𝑝(𝑥) = 𝜎(( (𝑥))) = 𝜎( 1
𝑇

𝐖⊤ (𝑥)
‖ (𝑥)‖

), (1)

where 𝜎(⋅) represents a softmax function and 𝑇 indicates a temperature
parameter. Larger 𝑝𝑘(𝑥), where 𝑝𝑘(𝑥) is the 𝑘th component of 𝑝(𝑥),
means a higher correlation between the data point 𝑥 and the prototype
corresponding to Class 𝑘, i.e., 𝐰𝑘. To build a good model for adaptation,
we have to minimize the distances between the class prototypes and
corresponding samples from both source and target domains, indirectly
strengthening correlations between both domains and thus achieving
cross-domain feature alignment.

In this paper, we perform supervised model training over all la-
beled samples across domains to address cross-domain distribution
discrepancies using a standard cross-entropy loss as follows,

𝒔𝒖𝒑(𝜃;𝑠,𝑙) = − 1
𝑁𝑠 +𝑁𝑙

∑

(𝑥𝑖 ,𝑦𝑖)∈𝑠∪𝑙

𝑝𝑦(𝑦𝑖) log(𝑝(𝑥𝑖)), (2)

where 𝑝𝑦(⋅) is a function to create a one-hot label probability vector
corresponding to the index of a class label.

3.2. Inter-domain Mixup

Similar to other DA tasks [5–7], we need to consider data from the
source and target domains in the context of probability distributions 
𝑠
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Fig. 3. A flow diagram of Inter-domain Mixup. A solid line represents a flow of sample-level data mixing (SDM), while a dashed line indicates a flow of manifold-level data
ixing (MDM). 𝜆1 (⋅; ⋅) and 𝜆2 (⋅; ⋅) are two mixup functions where 𝜆1 and 𝜆2 are two different mixup ratios. For the SDM flow, we obtain a mixup sample (𝑥𝑚 , 𝑦𝑚) by mixing

a source-target sample pair containing a labeled source domain sample (𝑥𝑠 , 𝑦𝑠) and a labeled target domain sample (𝑥𝑡 , 𝑦𝑡) through a linearly convex interpolation. For the MDM
low, two feature representations 𝑓 𝑠 and 𝑓 𝑡 along with their original labels 𝑦𝑠 and 𝑦𝑡 are mixed to generate an augmented feature 𝑓𝑚 and its associated label 𝑦̃𝑚. Afterwards, extra
upervision over these two types of mixup points, i.e., (𝑥𝑚 , 𝑦𝑚) and (𝑓𝑚 , 𝑦̃𝑚), is performed via a standard cross-entropy loss function.
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nd 𝑡, where 𝑠 ≠ 𝑡. Therefore, our adaptation model needs to reduce
omain shifts in order to align feature distributions across domains.

As partial label information is available in the target domain, we
ropose to make full use of the label information in the target do-
ain to achieve domain adaptation. Specifically, we propose a novel

ross-domain feature alignment strategy called Inter-Domain Mixup,
here source domain samples and target domain samples, as well
s their affiliated labels, are integrated into the feature alignment
rocess with Mixup operations. It acts as data augmentation and can
roduce additional reliably labeled samples for model training. Also,
n the inter-domain mixup operation, each generated sample can be
egarded as a bridge between the source and target domains, playing an
ndispensable role in closing the gaps between the two domains. Hence,
xtra supervision from these intermediate and complementary data not
nly prevents the model from overfitting the source domain dataset
ut also improves feature discriminability. Our proposed Inter-Domain
ixup conducts sample-level data mixing (SDM) and manifold-level

ata mixing (MDM) on source-target labeled sample pairs. A flow
iagram of Inter-domain Mixup is given in Fig. 3.
SDM is achieved with vanilla Mixup [43] to produce mixed image

𝑚 and its corresponding mixed label 𝑦𝑚 through a convex interpolation
f a source-target sample pair as follows:
𝑚 =𝜆1 (𝑥

𝑠, 𝑥𝑡) = 𝜆1𝑥
𝑠 + (1 − 𝜆1)𝑥𝑡,

𝑦𝑚 =𝜆1 (𝑦
𝑠, 𝑦𝑡) = 𝜆1𝑝𝑦(𝑦𝑠) + (1 − 𝜆1)𝑝𝑦(𝑦𝑡),

(3)

here 𝜆1 ∼ 𝐵𝑒𝑡𝑎(𝛼) is a mixup ratio and 𝛼 is a constant scalar of the
eta distribution. As well, (𝑥𝑠, 𝑦𝑠) and (𝑥𝑡, 𝑦𝑡) are labeled samples from
𝑠 and 𝐷𝑙 respectively. Note that 𝑦𝑚 here is not a class index but a

label probability vector.
Meanwhile, (𝑥𝑠, 𝑦𝑠) and (𝑥𝑡, 𝑦𝑡) are fed into the feature extractor and

the feature representations 𝑓 𝑠 =  (𝑥𝑠) and 𝑓 𝑡 =  (𝑥𝑡) are obtained.
According to Manifold Mixup used in [44], we carry out MDM that
mixes the source feature 𝑓 𝑠 and the target feature 𝑓 𝑡 in the latent
feature space by means of a convex combination:

𝑓𝑚 =𝜆2 (𝑓
𝑠, 𝑓 𝑡) = 𝜆2𝑓

𝑠 + (1 − 𝜆2)𝑓 𝑡,

𝑦̃𝑚 =𝜆2 (𝑦
𝑠, 𝑦𝑡) = 𝜆2𝑝𝑦(𝑦𝑠) + (1 − 𝜆2)𝑝𝑦(𝑦𝑡),

(4)

where 𝜆2 ∼ 𝐵𝑒𝑡𝑎(𝛼) is another mixup ratio.
Compared with existing labeled samples from both domains, the

mixed samples or features associated with mixed labels obtained by
SDM and MDM enrich label information and create a denser data
distribution in-between the two domains. Finally, we impose extra
supervision on the mixed samples using the following loss,

𝑰𝑫𝑴 (𝜃;𝑠,𝑙) = 𝒔𝒅𝒎(𝜃;𝑠,𝑙) + 𝒎𝒅𝒎(𝜃;𝑠,𝑙), (5)

𝒔𝒅𝒎(𝜃;𝑠,𝑙) = − 1
𝑁𝑝𝑎𝑖𝑟

𝑁𝑝𝑎𝑖𝑟
∑

𝑖=1
𝑦𝑚𝑖 log (𝑝(𝑥𝑚𝑖 )), (6)

𝒎𝒅𝒎(𝜃;𝑠,𝑙) = − 1
𝑁𝑝𝑎𝑖𝑟
∑

𝑦̃𝑚𝑖 log (𝜎((𝑓𝑚
𝑖 ))), (7)
5

𝑁𝑝𝑎𝑖𝑟 𝑖=1
l

where 𝑁𝑝𝑎𝑖𝑟 indicates the number of source-target sample pairs con-
tructed by one-to-one pairing from labeled samples in 𝑠 and 𝑙.

As discussed in Section 4.4, our mixup regularizer improves model
alibration, thereby increasing the accuracy of pseudo-labels of unla-
eled target domain samples provided by Neighborhood Expansion. In
ddition, Mixup also has the effect of denoising, attenuating the neg-
tive impact of incorrect pseudo-labels during training. In general, we
enerate augmented samples by mixing labeled source domain samples
ith originally labeled target domain samples or pseudo-labeled target
omain samples. As a result, Inter-domain Mixup ensures that at least
portion of the label information for such an augmented sample is

eliable.

.3. Neighborhood expansion

Inter-domain Mixup benefits the model by creating a large num-
er of valuable labeled samples. However, only a limited portion of
arget labels are available, i.e., one-shot or three-shot per class, which
ignificantly restrains the diversity of mixup samples and the represen-
ativeness of the dataset. Several recent work [6,7,13] have proved that
seudo labeling is very helpful to remedy this issue. Like such work,
e further propose Neighborhood Expansion to make full use of the
nlabeled samples in the target domain. Concretely, by pseudo labeling,
e assign a pseudo-label with the highest predicted probability to each
nlabeled sample in the target domain at the beginning of each training
poch, as long as its confidence is greater than a certain threshold. A
arge number of pseudo-labeled samples in the target domain provides
ore diversified representation learning information to improve the

eneralization ability of the classifier within the target domain.
Technically, we pre-define a confidence threshold 𝜏, and an unla-

eled target domain sample is assigned a pseudo-label 𝑦̂𝑢𝑖 = argmax
𝑝(𝑥𝑢𝑖 )) when the probability (confidence) score of its predicted class
abel is larger than 𝜏. Therefore, we select pseudo-labeled target domain
amples from 𝑢, merge them into the labeled target domain set 𝑙,
nd finally form a new target domain set ′

𝑙. Here, it is essential to
bserve that these pseudo-labeled target samples are not excluded from
𝑢. Furthermore, ′

𝑙 is used not only in equations of this section, but
lso in Eq. (6) and Eq. (7) of Section 3.2.

To make model predictions at unlabeled target domain samples
ore confident, we introduce Self-Regularization and Pairwise Ap-
roaching to reduce the uncertainty of the predictions, achieving the
oal of this by minimizing the following loss,

𝑵𝑬 (𝜃;′
𝑙 ,𝑢) = 𝒑𝒔𝒓(𝜃;𝑢) + 𝒏𝒔𝒓(𝜃;𝑢) + 𝒑𝒂(𝜃;𝑢,′

𝑙). (8)

.3.1. Self-Regularization
Self-Regularization allows the network to learn knowledge from a

ample itself. In our proposed method, Self-Regularization includes pos-
tive self-regularization learning (PSR) and negative self-regularization
earning (NSR). We employ PSR and NSR to handle unlabeled target
omain samples whose predicted probability scores are above and be-

ow the confidence threshold 𝜏 respectively. Specifically, different from
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Fig. 4. Illustrations of three schemes applied in Neighborhood Expansion to encourage low-entropy and high-confidence predictions for unlabeled target domain samples. (a)
Positive self-regularization learning (PSR) introduces self-training to augment the model’s robustness. (b) Negative self-regularization learning (NSR) is to raise the predictive
probabilities of each class except for the class corresponding to the lowest predicted probability scores. (c) Pairwise Approaching (PA) aims to drive high-confidence unlabeled
target domain samples towards labeled data of the same class in the target domain. Note that PSR and PA handle samples from 𝑢 whose confidence scores of their predicted
class labels are above the confidence threshold 𝜏, while NSR is of importance for unlabeled target domain samples with confidence scores lower than 𝜏.
traditional self-training techniques [53–56], our PSR only operates on
unlabeled target domain samples that achieve high predicted probabili-
ties since they are more likely to be assigned with correct pseudo-labels.
In addition, similar to [57], the proposed PSR expects an augmented
image to have the same model output as its original version. We enforce
positive self-regularization learning with a supervised cross-entropy
loss as follows,

𝒑𝒔𝒓(𝜃;𝑢) = − 1
∑

𝑥𝑢𝑖 ∈
𝜇𝑖

∑

𝑥𝑢𝑖 ∈
𝜇𝑖 ⋅ 𝑝𝑦(𝑦̂𝑢𝑖 ) log(𝑝(𝑥

𝑢
𝑖 + 𝛿)), (9)

where 𝑦̂𝑢𝑖 = argmax (𝑝(𝑥𝑢𝑖 )) indicates the pseudo-label of a sample 𝑥𝑢𝑖 ,
and 𝑝(𝑥𝑢𝑖 ) represents the prediction at an unlabeled image 𝑥𝑢𝑖 . Also,
𝑝(𝑥𝑢𝑖 +𝛿) represents the prediction at a transformed image 𝑥𝑢𝑖 +𝛿, where
we use RandAugment [58] to add a perturbation 𝛿 to the original
image 𝑥𝑢𝑖 . Moreover, 𝜇𝑖 = 1{max(𝑝(𝑥𝑢𝑖 )) ≥ 𝜏} indicates the probabilistic
confidence score of the predicted label of a sample 𝑥𝑢𝑖 should be larger
than 𝜏, and 1{⋅} is an indicator function. As illustrated in Fig. 4(a), PSR
can strengthen the robustness of the model so as to implicitly achieve
higher confidence at an unlabeled sample in the target domain.

For unlabeled target domain samples whose probability (confi-
dence) scores associated with their predicted class labels are below
the confidence threshold 𝜏, assigning them hard pseudo-labels could
easily confuse the model with incorrect label information. As training
proceeds, the classifier would gradually fit the assigned noisy pseudo-
labels, giving rise to performance degradation. Therefore, as like [59],
we here intend to employ NSR to assign a hard ‘‘complementary’’ label
to an unlabeled sample with a low confidence score in the target do-
main. Concretely, a complementary label is determined by the index of
the minimum component of the sample’s predicted probability vector.
In this case, the complementary label means that the sample has the
maximum probability of not belonging to the corresponding class. To
this end, we optimize the model via an NSR loss, i.e., 𝒏𝒔𝒓, to make the
probabilities of the predicted complementary class labels of unlabeled
target domain samples farther away from 1 but closer to 0 as follows:

𝒏𝒔𝒓(𝜃;𝑢) = − 1
∑

𝑥𝑢𝑖 ∈
𝜇′
𝑖

∑

𝑥𝑢𝑖 ∈
𝜇′
𝑖 ⋅ 𝑝𝑦(𝑦̄

𝑢
𝑖 ) log(1 − 𝑝(𝑥𝑢𝑖 )), (10)

where 𝑦̄𝑢𝑖 = argmax (1 − 𝑝(𝑥𝑢𝑖 )) and 𝜇′
𝑖 = 1{max(𝑝(𝑥𝑢𝑖 )) < 𝜏} indicates

the highest predicted probability score of 𝑥𝑢𝑖 is less than 𝜏. Note that
NSR differs from [59] since a complementary label in [59] is selected
from all class labels at random except for the predicted class label
corresponding to the highest confidence score of a sample. As shown in
Fig. 4(b), after model optimization with the NSR loss, the probability
score of the predicted complementary class label of a sample has been
almost decreased to 0, but the predicted probabilities of other classes
are increased.
6

Algorithm 1: Pseudo-code of IDMNE.
1 Input: Labeled samples 𝑠, labeled samples 𝑙, unlabeled samples

𝑢, confidence threshold 𝜏, number of training epochs 
2 Output: Optimal model parameters 𝜃
3 for 𝑒𝑝𝑜𝑐ℎ = 1, 2,… ,  do
4 for 𝑥 ∈ 𝑢 do
5 𝑦̂ = argmax (𝑝(𝑥));
6 ′

𝑙 ← ′
𝑙 ∪ {(𝑥, 𝑦̂)|max(𝑝(𝑥)) ≥ 𝜏};

7 ′
𝑙 ← 𝑙 ∪′

𝑙 ;
8 Randomly sample mini-batches

𝑠 ⊂ 𝑠𝑙 ⊂ 𝑙 ,′
𝑙 ⊂ ′

𝑙𝑎𝑛𝑑𝑢 ⊂ 𝑢;
9 Update model parameters 𝜃 by applying SGD with the overall

loss,  = 𝒔𝒖𝒑(𝜃;𝑠,𝑙) + 𝛽𝑰𝑫𝑴 (𝜃;𝑠,′
𝑙) + 𝛾𝑵𝑬 (𝜃;′

𝑙 ,𝑢).

3.3.2. Pairwise Approaching
Pairwise Approaching (PA) is introduced to make feature repre-

sentations in the target domain more compact by driving unlabeled
samples closer to those labeled ones. During the training process, model
predictions at more and more unlabeled target domain samples have
a confidence level exceeding the threshold 𝜏. Given this observation,
we draw on the idea of contrastive learning [60] and introduce binary
cross-entropy as a loss term to make those unlabeled samples with
high confidence approach those labeled target domain samples of the
same category to learn more compact features. The loss for Pairwise
Approaching is formulated as follows:

𝒑𝒂(𝜃;𝑢,′
𝑙) =

− 1
∑

𝑥𝑢𝑖 ∈
𝜇𝑖

∑

𝑥𝑢𝑖 ∈𝑢

∑

𝑥𝑙𝑗∈
′
𝑙

𝜇𝑖 ⋅ [𝜈𝑖𝑗 log(𝐩𝖳𝑖 𝐩𝑗 )

+ (1 − 𝜈𝑖𝑗 ) log(1 − 𝐩𝖳𝑖 𝐩𝑗 )],

(11)

where 𝐩𝑖 = 𝑝(𝑥𝑙𝑖) and 𝐩𝑗 = 𝑝(𝑥𝑢𝑗 ) represent the predictions at a labeled
(or pseudo-labeled) target image 𝑥𝑙𝑖 and an unlabeled target image
𝑥𝑢𝑗 , respectively. Also, 𝜈𝑖𝑗 = 1{𝑦̂𝑢𝑖 = 𝑦𝑙𝑗} denotes a pairwise label that
indicates whether 𝑥𝑢𝑖 and 𝑥𝑙𝑗 have the same class label. As shown in
Fig. 4(c), this loss enables the selected unlabeled target domain data to
obtain higher predicted probability scores so that the model produces
predictions with lower entropy but higher confidence for them.

3.4. Overall loss function

The overall training procedure of our proposed method is described
in Algorithm 1. At the beginning of each epoch, we first use the
pseudo labeling scheme to assign pseudo-labels to a subset of unlabeled
samples in  whose confidence score of the predicted class label is
𝑢
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larger than the threshold 𝜏. Then, we update 𝑙 to include the pseudo-
abeled target domain samples and form ′

𝑙. Next, four mini-batches
𝑠, 𝑙, ′

𝑙 and 𝑢 are assembled by means of random sampling from
𝑠, 𝑙, ′

𝑙 and 𝑢. Finally, the overall loss function for model training
an be formulated as follows,

= 𝒔𝒖𝒑(𝜃;𝑠,𝑙) + 𝛽𝑰𝑫𝑴 (𝜃;𝑠,′
𝑙) + 𝛾𝑵𝑬 (𝜃;′

𝑙 ,𝑢), (12)

where 𝛽 and 𝛾 are two hyper-parameters that trade-offs the losses. In
all experiments, we set 𝛽 = 1.0 and 𝛾 = 0.1, respectively. In order to
mitigate the influence exerted by under-confident unlabeled samples
on the model, we have discovered that configuring a smaller 𝛾 proves
advantageous for the acquisition of a more optimal adaptation model.

4. Experiments

To demonstrate the advantages of the proposed IDMNE method,
we have conducted extensive experiments on multiple widely-used
benchmarks, namely DomainNet [18], Office-Home [19] and Of-
fice-31 [20]. We first briefly introduce the experimental setups, such
as the details of evaluation datasets and the corresponding evaluation
protocols. Then, we perform comprehensive comparisons to verify
the superiority of our IDMNE over existing state-of-the-art methods.
Finally, we have performed detailed ablation studies to demonstrate
the contribution of each component within IDMNE. Note that we im-
plemented the proposed method using PyTorch,1 a popular platform for
deep learning, and run all experiments on an NVIDIA GeForce 1080Ti
GTX GPU.

4.1. Datasets

We evaluate the proposed approach on three widely used SSDA
benchmark datasets: DomainNet [18], Office-Home [19] and
Office-31 [20]. Following prior algorithms, the number of labeled
target domain samples is set to 1 shot or 3 shots per class.

DomainNet is a standard benchmark dataset for multi-source do-
main adaptation with a large scale of 0.6 million images. DomainNet
has 6 domains and each domain consists of 345 categories. Follow-
ing [5], we adopt only 4 domains, namely Real: R, Clipart: C, Paint-
ing: P, and Sketch: S, and 126 categories to validate the proposed
framework for adaptation. As in [5], we also choose seven adaptation
scenarios for performance comparisons.

Office-Home is another popular SSDA benchmark dataset used
to evaluate the proposed method with several challenging adaptation
scenarios. This dataset involves approximately 65 classes. There are 4
domains, including Real: R, Clipart: C, Art: A, and Product: P. To be
fair, we follow previous SSDA work [5–7] to carry out 12 adaptation
scenarios on this dataset.

Office-31 is a small-scale benchmark dataset used for SSDA eval-
uation. This dataset has three domains, including DSLR: W, Webcam:
W, and Amazon: A, and 31 classes.

4.2. Experimental protocols

Following [5,6,13,61], we adopt AlexNet [62] and ResNet-34 [63]
as network backbones for evaluation on DomainNet while using
AlexNet, VGG-16 [64] and ResNet-34 on Office-Home. We only use
AlexNet on Office-31. To achieve a fair comparison, we first ini-
tialize the networks with pre-trained weights from ImageNet [65] and
replace the last layer with a prototypical classifier. This prototypical
classifier has an unbiased linear layer, which is initialized using random
parameters and a temperature 𝑇 = 0.05. We perform model training
using Stochastic Gradient Descent (SGD) with a momentum of 0.9 and
a weight decay of 5 × 10−4. Moreover, the initial learning rate is set to

1 https://pytorch.org/
7

F

𝜂0 = 0.001 and is updated by following the rule in [5] as model training
terates, i.e., 𝜂𝑡 =

𝜂0
(1+0.0001×𝑡)0.75 , where 𝜂𝑡 denotes the learning rate at 𝑡th

teration.
At the start of each iteration, we randomly sample four mini-batches

𝑠 ⊂ 𝑠, 𝑙 ⊂ 𝑙, ′
𝑙 ⊂ ′

𝑙 and 𝑢 ⊂ 𝑢, where ′
𝑙 contains labeled

samples from 𝑙 as well as pseudo-labeled samples obtained from 𝑢.
he mini-batch size of 𝑠, 𝑙, ′

𝑙 and 𝑢 are set to 24, 24, 24 and 48,
espectively when ResNet-34 or VGG-16 is used (32, 32, 32 and 64
or AlexNet). Before being fed into the network, the size of the input
mages is first resized to 256 × 256, then the images are augmented
sing the random horizontal flip and random crop (224 × 224 for VGG-
6 and ResNet-34, and 227 × 227 for AlexNet). We finally subtract
he per-pixel image mean of the dataset from all images. In addition,
he model is trained with 150 epochs (7500 iterations) on 𝙳𝚘𝚖𝚊𝚒𝚗𝙽𝚎𝚝,
00 epochs (2500 iterations) on 𝙾𝚏𝚏𝚒𝚌𝚎 − 𝙷𝚘𝚖𝚎, and 100 epochs (1500
terations) on 𝙾𝚏𝚏𝚒𝚌𝚎 − 𝟹𝟷, i.e.,  = 150 for DomainNet and  = 100
or Office-Home and Office-31. As well, 𝜏 and 𝛼 are set to 0.95
nd 2.0, respectively.

etting the Hyper-parameters 𝛼, 𝛽, 𝛾, and 𝜏. We set the value of 𝛼 to
.0, which is commonly used in Mixup operations [43,44]. For 𝜏, we
ecided on a value of 0.95, following the common practice in pseudo-
abeling techniques [57]. To determine suitable values for 𝛽 and 𝛾,
e conducted hyper-parameter selection using the ‘‘𝑅 → 𝑆’’ case on

he DomainNet dataset, using ResNet-34 and the 3-shot setup. We
hen applied these chosen settings to other benchmark datasets and
daptation scenarios, ensuring the reproducibility and simplicity of our
roposed algorithm. For the details of choosing of 𝛽 and 𝛾, similarly to
ME [5], we first selected three labeled examples as the validation set

or the target domain. We utilized these validation examples to choose
hose hyper-parameters through a grid search. During this process, we
onducted the experiment by fixing the value of 𝛽 to adjust 𝛾, and then
ixing 𝛾 to adjust 𝛽. Finally, we chose the values of 𝛽 = 1.0 and 𝛾 = 0.1
ased on the highest validation accuracy achieved.

veraged Cluster Centroid Distance. We propose the averaged Clus-
er Centroid Distance (ACCD) as a metric, inspired by prior works [6],
o evaluate the effectiveness of our Inter-domain Mixup approach in
chieving cross-domain feature alignment. ACCD quantifies the dis-
ance between the feature clusters of the source and target domains
or all classes in the dataset. Specifically, ACCD is calculated as 𝑑𝑒𝑎𝑣𝑔 =
𝐯𝐞𝐫𝐚𝐠𝐞({𝑑𝑒1 , 𝑑

𝑒
2 ,… , 𝑑𝑒𝑘,… , 𝑑𝑒𝐾}), where 𝐚𝐯𝐞𝐫𝐚𝐠𝐞(⋅) computes the average

f the given inputs, and 𝐾 represents the number of classes in the
ataset. Here, 𝑑𝑒𝑘 refers to the pairwise Euclidean distances between the
entroids of the feature clusters from the source and target domains
or class 𝑘 at epoch 𝑒, each of which should be normalized by the
nitial distance 𝑑0𝑘 , obtained from the initial model with pre-trained
eights on ImageNet without any fine-tuning. In general, a smaller
CCD indicates better feature alignment between the source and target
omain clusters.

.3. Comparison with the state of the arts

We perform experimental comparisons between the proposed
ethod and existing state-of-the-art SSDA algorithms, including S+T

5], DANN [4], MME [5], UODA [9], Meta-MME [66], BiAT [67],
PE [7], PAC [68], ELP [61], DECOTA [13], Relaxed-cGAN [8],
DAC [6], and UODAv2 [69]. The results of S+T and DANN are
orrowed from [5]. S+T trains the model using a cross-entropy loss
ver the labeled source and target domain data only. DANN is modified
rom [4], and the model is trained with labeled source domain data,
nlabeled target domain data, and a small amount of labeled target
omain data. In addition, MME, Meta-MME, UODA and CDAC are
dversarial learning based approaches while APE and Relaxed-cGAN
ainly focus on minimizing cross-domain discrepancy measures and

ely on image style transfer, while UODAv2 is the extension of UODA.
urthermore, to address the SSDA problem, Meta-MME, BiAT, PAC

https://pytorch.org/
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Table 1
Comparison results (%) on 4 domains of DomainNet under the 3-shot setting using AlexNet. (Mean accuracy and 95% confidence interval
over five trails).
Method R→C R→P P→C C→S S→P R→S P→R Mean

S+T [5] 47.1 45.0 44.9 36.4 38.4 33.3 58.7 43.4
DANN [5] 46.1 43.8 41.0 36.5 38.9 33.4 57.3 42.4
MME [5] 55.6 49.0 51.7 39.4 43.0 37.9 60.7 48.2
Meta-MME [66] 56.4 50.2 51.9 39.6 43.7 38.7 60.7 48.8
BiAT [67] 58.6 50.6 52.0 41.9 42.1 42.0 58.8 49.4
APE [7] 54.6 50.5 52.1 42.6 42.2 38.7 61.4 48.9
PAC [68] 61.7 56.9 59.8 52.9 43.9 48.2 59.7 54.7
Relaxed-cGAN [8] 56.8 51.8 52.0 44.1 44.2 42.8 61.1 50.5
CDAC [6] 61.4 57.5 58.9 50.7 51.7 46.7 66.8 56.2
IDMNE (Ours) 63.17 ± 0.22 58.96 ± 0.30 61.48 ± 0.21 54.88 ± 0.77 53.58 ± 0.42 48.52 ± 0.44 67.49 ± 0.22 58.30
Table 2
Comparison results (%) on 4 domains of DomainNet under the 1-shot and 3-shot settings using ResNet-34. (Mean accuracy and 95% confidence interval over five trails).

Method R→C R→P P→C C→S S→P R→S P→R Mean

1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot 1-shot 3-shot

S+T [5] 55.6 60.0 60.6 62.2 56.8 59.4 50.8 55.0 56.0 59.5 46.3 50.1 71.8 73.9 56.9 60.0
DANN [5] 58.2 59.8 61.4 62.8 56.3 59.6 52.8 55.4 57.4 59.9 52.2 54.9 70.3 72.2 58.4 60.7
MME [5] 70.0 72.2 67.7 69.7 69.0 71.7 56.3 61.8 64.8 66.8 61.0 61.9 76.1 78.5 66.4 68.9
UODA [9] 72.7 75.4 70.3 71.5 69.8 73.2 60.5 64.1 66.4 69.4 62.7 64.2 77.3 80.8 68.5 71.2
BiAT [67] 73.0 74.9 68.0 68.8 71.6 74.6 57.9 61.5 63.9 67.5 58.5 62.1 77.0 78.6 67.1 69.7
APE [7] 70.4 76.6 70.8 72.1 72.9 76.7 56.7 63.1 64.5 66.1 63.0 67.8 76.6 79.4 67.6 71.7
PAC [68] 74.9 78.6 73.0 74.3 72.6 76.0 65.8 69.6 67.9 69.4 68.7 70.2 76.7 79.3 71.4 73.9
ELP [61] 72.8 74.9 70.8 72.1 72.0 74.4 59.6 64.3 66.7 69.7 63.3 64.9 77.8 81.0 69.0 71.6
DECOTA [13] 79.1 80.4 74.9 75.2 76.9 78.7 65.1 68.6 72.0 72.7 69.7 71.9 79.6 81.5 73.9 75.6
CDAC [6] 77.4 79.6 74.2 75.1 75.5 79.3 67.6 69.9 71.0 73.4 69.2 72.5 80.4 81.9 73.6 76.0
UODAv2 [69] 77.0 79.4 75.4 76.7 75.5 78.3 66.5 70.2 72.1 74.2 70.9 72.1 79.7 82.3 73.9 76.2
IDMNE (Ours) 79.56 ± 0.21 80.81 ± 0.21 75.95 ± 0.30 76.88 ± 0.11 79.43 ± 0.17 80.29 ± 0.13 71.69 ± 0.73 72.22 ± 0.35 75.35 ± 0.48 75.39 ± 0.12 73.48 ± 0.64 73.92 ± 0.28 82.14 ± 0.67 82.80 ± 0.06 76.80 77.47
Table 3
Comparison results (%) on 4 domains of Office-Home under the 3-shot setting using AlexNet. (Mean accuracy and 95% confidence interval over five trails).

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

S+T [5] 44.6 66.7 47.7 57.8 44.4 36.1 57.6 38.8 57.0 54.3 37.5 57.9 50.0
DANN [5] 47.2 66.7 46.6 58.1 44.4 36.1 57.2 39.8 56.6 54.3 38.6 57.9 50.3
ENT [5] 44.9 70.4 47.1 60.3 41.2 34.6 60.7 37.8 60.5 58.0 31.8 63.4 50.9
MME [5] 51.2 73.0 50.3 61.6 47.2 40.7 63.9 43.8 61.4 59.9 44.7 64.7 55.2
Meta-MME [66] 50.3 – – – 48.3 40.3 – 44.5 – – 44.5 – –
BiAT [67] – – – – – – – – – – – – 56.4
APE [7] 51.9 74.6 51.2 61.6 47.9 42.1 65.5 44.5 60.9 58.1 44.3 64.8 55.6
PAC [68] 58.9 72.4 47.5 61.9 53.2 39.6 63.8 49.9 60.0 54.5 36.3 64.8 55.2
CDAC [6] 54.9 75.8 51.8 64.3 51.3 43.6 65.1 47.5 63.1 63.0 44.9 65.6 56.8
IDMNE (Ours) 55.91 ± 0.38 76.91 ± 0.56 51.98 ± 0.25 65.79 ± 0.22 53.00 ± 0.72 43.48 ± 0.69 66.28 ± 0.31 47.20 ± 0.78 61.10 ± 0.42 63.69 ± 0.58 42.83 ± 0.16 65.97 ± 0.42 57.84
Table 4
Comparison results (%) on 4 domains of Office-Home under the 1-shot and 3-shot settings using VGG-16. (Mean accuracy and 95% confidence interval over five trails).

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

1-shot

S+T [5] 39.5 75.3 61.2 71.6 37.0 52.0 63.6 37.5 69.5 64.5 51.4 65.9 57.4
DANN [5] 52.0 75.7 62.7 72.7 45.9 51.3 64.3 44.4 68.9 64.2 52.3 65.3 60.0
ENT [5] 23.7 77.5 64.0 74.6 21.3 44.6 66.0 22.4 70.6 62.1 25.1 67.7 51.6
MME [5] 49.1 78.7 65.1 74.4 46.2 56.0 68.6 45.8 72.2 68.0 57.5 71.3 62.7
UODA [9] 49.6 79.8 66.1 75.4 45.5 58.8 72.5 43.3 73.3 70.5 59.3 72.1 63.9
ELP [61] 49.2 79.7 65.5 75.3 46.7 56.3 69.0 46.1 72.4 68.2 67.4 71.6 63.1
DECOTA [13] 47.2 80.3 64.6 75.5 47.2 56.6 71.1 42.5 73.1 71.0 57.8 72.9 63.3
UODAv2 [69] 51.6 80.9 66.9 75.9 49.7 60.5 71.0 44.9 73.2 70.6 58.7 72.8 64.7
IDMNE (Ours) 52.61 ± 0.92 81.75 ± 0.98 67.51 ± 0.23 77.27 ± 0.06 50.67 ± 0.45 59.70 ± 0.74 73.71 ± 0.77 49.62 ± 0.06 72.64 ± 0.41 71.42 ± 0.18 62.52 ± 0.53 76.17 ± 1.70 66.30

3-shot

S+T [5] 49.6 78.6 63.6 72.7 47.2 55.9 69.4 47.5 73.4 69.7 56.2 70.4 62.9
DANN [5] 56.1 77.9 63.7 73.6 52.4 56.3 69.5 50.0 72.3 68.7 56.4 69.8 63.9
ENT [5] 48.3 81.6 65.5 76.6 46.8 56.9 73.0 44.8 75.3 72.9 59.1 77.0 64.8
MME [5] 56.9 82.9 65.7 76.7 53.6 59.2 75.7 54.9 75.3 72.9 61.1 76.3 67.6
UODA [9] 57.6 83.6 67.5 77.7 54.9 61.0 77.7 55.4 76.7 73.8 61.9 78.4 68.9
APE [7] 56.0 81.0 65.2 73.7 51.4 59.3 75.0 54.4 73.7 71.4 61.7 75.1 66.5
ELP [61] 57.1 83.2 67.0 76.3 53.9 59.3 75.9 55.1 76.3 73.3 61.9 76.1 68.0
DECOTA [13] 59.9 83.9 67.7 77.3 57.7 60.7 78.0 54.9 76.0 74.3 63.2 78.4 69.3
UODAv2 [69] 59.3 83.6 68.0 78.3 56.8 61.8 78.6 55.7 75.3 74.0 63.3 78.9 69.5
IDMNE (Ours) 60.21 ± 0.29 84.42 ± 0.59 69.33 ± 0.38 77.92 ± 0.44 59.15 ± 1.06 62.63 ± 0.81 77.68 ± 1.16 58.24 ± 0.15 76.68 ± 0.20 74.89 ± 0.49 64.56 ± 0.41 79.27 ± 0.32 70.41
2
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and DECOTA adapt previous techniques, such as meta-learning [70],
VAT [71], FixMatch [57], Co-training [72], and so on. Tables 1–6
have listed the mean accuracy and 95% confidence interval over five
trials in each experiment of different adaptation scenarios. The results
demonstrate that across different datasets using various network back-
bones under either 1-shot or 3-shot setups, the average performance for
all adaptation scenarios achieves higher than all existing state-of-the-
art algorithms, illustrating the superiority of the proposed approach
in handling the SSDA task. Additionally, it can be observed that, in
the majority of individual adaptation cases, the results show that our
average accuracy with the lower bound still achieves the best. This
shows that the proposed method can obtain statistically significant
8

b

performance improvement over most of the existing best-performing
methods.

Results on DomainNet. Comparison results between our method and
previous SSDA algorithms on DomainNet are shown in Tables 1–
. On this dataset, we carry out experiments under the 3-shot set-
ing using AlexNet and ResNet-34, and under the 1-shot setting using
esNet-34. The average performance of the proposed method exceeds

hat of previous algorithms by large margins under all settings. This
emonstrates that our method can perform well in diverse adaptation
cenarios defined on DomainNet. Specifically, as shown in Table 1,
ur algorithm improves the mean accuracy achieved by the existing
est-performing algorithm, i.e., CDAC, by 2.10%, under the 3-shot
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Table 5
Comparison results (%) on 4 domains of Office-Home under the 3-shot setting using ResNet-34. (Mean accuracy and 95% confidence interval over five trails).

Method R→C R→P R→A P→R P→C P→A A→P A→C A→R C→R C→A C→P Mean

S+T [5] 55.7 80.8 67.8 73.1 53.8 63.5 73.1 54.0 74.2 68.3 57.6 72.3 66.2
DANN [5] 57.3 75.5 65.2 69.2 51.8 56.6 68.3 54.7 73.8 67.1 55.1 67.5 63.5
ENT [5] 62.6 85.7 70.2 79.9 60.5 63.9 79.5 61.3 79.1 76.4 64.7 79.1 71.9
MME [5] 64.6 85.5 71.3 80.1 64.6 65.5 79.0 63.6 79.7 76.6 67.2 79.3 73.1
Meta-MME [66] 65.2 – – – 64.5 66.7 – 63.3 – – 67.5 – –
APE [7] 66.4 86.2 73.4 82.0 65.2 66.1 81.1 63.9 80.2 76.8 66.6 79.9 74.0
Relaxed-cGAN [8] 68.4 85.5 73.8 81.2 68.1 67.9 80.1 64.3 80.1 77.5 66.3 78.3 74.2
DECOTA [13] 70.4 87.7 74.0 82.1 68.0 69.9 81.8 64.0 80.5 79.0 68.0 83.2 75.7
CDAC [6] 67.8 85.6 72.2 81.9 67.0 67.5 80.3 65.9 80.6 80.2 67.4 81.4 74.2
IDMNE (Ours) 71.73 ± 0.56 88.09 ± 0.33 75.16 ± 0.17 82.68 ± 0.26 67.58 ± 0.23 68.98 ± 0.28 82.41 ± 0.32 66.39 ± 0.68 79.32 ± 0.18 79.49 ± 0.52 69.10 ± 0.79 83.08 ± 0.77 76.17
Table 6
Comparison results (%) on Office-31 under the 3-shot setting using AlexNet. (Mean
ccuracy and 95% confidence interval over five trails).
Method W→A D→A Mean

S+T [5] 61.2 62.4 61.8
DANN [5] 64.4 65.2 64.8
ENT [5] 64.0 66.2 65.1
MME [5] 67.3 67.8 67.6
BiAT [67] 68.2 68.5 68.4
APE [7] 67.6 69.0 68.3
CDAC [6] 70.1 70.0 70.0
IDMNE (Ours) 71.03 ± 0.34 71.32 ±0.47 71.18

setting using AlexNet. Moreover, Table 2 also shows that the proposed
algorithm achieves the highest mean accuracy and exceeds UODAv2
by 2.90% and 1.27%, respectively, under the 1-shot and 3-shot settings
using ResNet-34.

Results on Office-Home. To further validate the effectiveness of
IDMNE, we compare our method with existing algorithms on the
smaller Office-Home benchmark. For fair comparisons, we conduct
experiments only under the 3-shot setting when AlexNet or ResNet-
34 is the backbone network but report the experimental results under
both 1-shot and 3-shot settings when VGG-16 is used as the backbone.
Comparison results on Office-Home are shown in Tables 3–5, in-
dicating that the proposed method again achieves the best average
performance in all adaptation cases under all settings. In particular,
Table 4 shows that in comparison to the highest accuracy achieved
by previous algorithms, the average performance gain of our proposed
method is respectively 1.60% and 0.91% under the 1-shot and 3-shot
settings when VGG-16 is the backbone. Furthermore, our method also
performs well on Office-Home with 1.04% and 0.47% performance
boosts when AlexNet and ResNet-34 work as the backbone networks,
respectively.

Results on Office-31. We also evaluate IDMNE using the adaptation
tasks defined on Office-31. For a fair comparison with previous
algorithms, only AlexNet is adopted as the backbone in the experiments
on Office-31. Table 6 shows the comparison result under the 3-
shot setting. The proposed method achieves a mean accuracy of 70.9%,
which boosts the previous best-performing algorithm, CDAC, by 0.9%,
suggesting that our algorithm also works well on small and relatively
simple datasets.

4.4. Analysis

In this section, we first evaluate the effect of our proposed IDMNE
in two aspects, including Inter-domain Mixup and Neighborhood Ex-
pansion. Then, further analysis is performed to validate the impact of
several important factors w.r.t our approach.

Ablation Study on Inter-domain Mixup. Inter-domain Mixup involves
two loss functions, i.e., 𝒔𝒅𝒎 and 𝒎𝒅𝒎, to achieve cross-domain feature
alignment. We conduct variants of Inter-domain Mixup to verify the
efficacy of each loss function. We first design a baseline experiment,
namely ‘‘Baseline1’’, where the model is trained only with 𝒔𝒖𝒑. Then,
adding 𝒔𝒅𝒎 and 𝒎𝒅𝒎 in turn to ‘‘Baseline1’’ forms ‘‘Baseline1+SDM’’,
‘‘Baseline1+MDM’’ and ‘‘Baseline1+SDM+MDM’’. As shown in Ta-
9

ble 7, ‘‘Baseline1+SDM+MDM’’ improves ‘‘Baseline1’’ by 15.3% on
average while the performance gain of ‘‘Baseline1+SDM’’ and ‘‘Base-
line1+MDM’’ over ‘‘Baseline1’’ reaches 13.1% and 14.0%, respectively.
This means that both 𝒔𝒅𝒎 and 𝒎𝒅𝒎 improve the performance of
‘‘Baseline1’’, and incorporating both into ‘‘Baseline1’’ achieves a greater
performance improvement, demonstrating the complementarity of the
two.

Ablation Study on Neighborhood Expansion. Neighborhood Expan-
sion has three loss functions, including 𝒑𝒔𝒓, 𝒏𝒔𝒓 and 𝒑𝒂, which are
used to further optimize the model trained with 𝒔𝒖𝒑 + 𝒔𝒅𝒎 + 𝒎𝒅𝒎
(Called ‘‘Baseline2’’). We compare diverse loss functions in Neigh-
borhood Expansion in order to verify the validity of each loss term.
For simplification, we design three variants, namely ‘‘Baseline2+PSR’’,
‘‘Baseline2+PSR+NSR’’ and ‘‘Baseline2+PSR+NSR+PA’’, to gradually
add 𝒑𝒔𝒓, 𝒏𝒔𝒓 and 𝒑𝒂 to the loss function for ‘‘Baseline2’’. As shown
in Table 8, in comparison to the performance of ‘‘Baseline2’’, the
gain of each variant in mean accuracy reaches 0.9%, 1.6% and 2.2%,
respectively, suggesting that both Self-Regularization and Pairwise Ap-
proaching are of significance for the model’s performance.

Hyper-parameter Sensitivity to Confidence Threshold 𝜏. 𝜏 is a
hyper-parameter that determines the assignment of pseudo-labels to
unlabeled target samples. We study the impact of this parameter on
the overall performance of our model. As shown in Fig. 5(a)–(d),
more pseudo-labels are assigned as 𝜏 decreases, but we can observe an
accuracy drop of pseudo-labels at the same time, indicating the adverse
effect of the noisy pseudo-labels on the model training. We set 𝜏 = 0.95
according to its best performance on the validation set.

Effect of the Proposed Complementary Label Selection Scheme in
NSR. To evaluate the effectiveness of our proposed complementary
label selection scheme, we compared it to the scheme outlined in [59].
In their strategy, the complementary label is randomly chosen from
all possible class labels, except the one with the highest confidence.
Fig. 6(a) shows that their scheme, referred to as ‘‘IDMNE w/ NSR
(random)’’, does not offer a significant performance advantage over
our proposed scheme, here denoted as ‘‘IDMNE w/ NSR (minimum)’’.
In fact, it may even be less effective than the cases indicated by
‘‘IDMNE w/o NSR’’ where NSR is not employed. This outcome can
be attributed to the fact that NSR is only applied to unlabeled target
samples with a predicted confidence below a predefined threshold. As
depicted in Fig. 5, the pseudo-labels assigned to these samples tend to
be unreliable and may contain noisy labels. Randomly selecting class
labels, excluding the one with the highest confidence score, increases
the likelihood of selecting a true label as a complementary label. This
elevates the risk of propagating incorrect information during NSR,
which has an adverse effect on the training of the adaptation model
and diminishes its overall performance.

Necessity of Pseudo Labeling. We compare IDMNE with ‘‘IDMNE w/o
pseudo labeling’’, which refers to that the model is trained without
using any supervision from pseudo-labels. As shown in Fig. 6(b), as
training progresses, the accuracy of IDMNE and ‘‘IDMNE w/o pseudo la-
beling’’ gradually improves. However, the accuracy of IDMNE improves
faster. At the end, the accuracy of IDMNE surpasses that of the latter by
approximately 3%. This confirms the crucial necessity of pseudo-labels
for our proposed method.

Model Calibration with Mixup. According to [15], deep neural net-

works (DNNs) tend to possess poor model calibration, resulting in



Pattern Recognition 146 (2024) 110023J. Li et al.
Table 7
Ablation study of Inter-domain Mixup on DomainNet under the 3-shot setting using ResNet-34.

Method R→C R→P P→C C→S S→P R→S P→R Mean

Baseline1 60.0 62.2 59.4 55.0 59.5 50.1 73.9 60.0
Baseline1+SDM 74.7 72.9 75.5 69.1 70.8 68.9 79.8 73.1
Baseline1+MDM 76.9 73.1 76.8 69.3 71.3 69.6 80.9 74.0
Baseline1+SDM+MDM 77.7 75.3 78.3 70.7 72.4 71.7 81.0 75.3
Table 8
Ablation study of Neighborhood Expansion on DomainNet under the 3-shot setting using ResNet-34.

Method R→C R→P P→C C→S S→P R→S P→R Mean

Baseline2 77.7 75.3 78.3 70.7 72.4 71.7 81.0 75.3
Baseline2+PSR 78.5 76.0 79.2 72.0 73.1 72.2 82.2 76.2
Baseline2+PSR+NSR 79.8 76.7 79.8 71.6 74.4 73.3 82.9 76.9
Baseline2+PSR+NSR+PA (i.e., IDMNE) 80.7 77.0 80.6 72.1 75.2 74.2 82.7 77.5
Fig. 5. Hyper-parameter sensitivity to confidence threshold 𝜏. We show the evolution of (a) the test accuracy in the target domain w.r.t different setting of 𝜏, (b) the number of
pseudo-labels involved in samples from 𝑢 with maximum class probability prediction larger than 𝜏, (c) the number of correct pseudo-labels, and (d) the correction accuracy of
pseudo-labels by comparing (b) with (c), while varying the confidence threshold 𝜏. Various colors denote different values with respect to 𝜏. We carry out these experiments on
DomainNet in the adaptation scenario ‘‘𝑅 → 𝑆’’ under the 3-shot setting using ResNet-34.
Fig. 6. (a) Comparison results of ‘‘IDMNE w/o NSR’’, ‘‘IDMNE w/ NSR (random)’’ and ‘‘IDMNE w/ NSR (minimum)’’. (b) Comparison results of IDMNE and ‘‘IDMNE w/o pseudo
labeling’’. (c) Calibration results of ‘‘Baseline1+SDM+MDM’’ (with Mixup) and ‘‘Baseline1’’ (without Mixup) while displaying with a scatterplot between the accuracy and the
average confidence per bin (100 bins in total). The red line indicates where the accuracy matches the confidence. We conducted experiments on DomainNet, specifically in the
adaptation cases ‘‘𝑅 → 𝑆’’, ‘‘𝑆 → 𝑃 , and ‘‘𝑃 → 𝐶 ’’ for (a), as well as in the scenario ‘‘𝑅 → 𝑆’’ for both (b) and (c). All experiments were performed under the 3-shot setting using
the ResNet-34 architecture. (Best viewed zoomed in.).
the model generating high probability (confidence) scores for class
labels that are actually incorrect. This overconfidence could give rise
to the result that the model accuracy on a sample set is lower than
its average predicted confidence score on the same set. Thus, over-
confidence would do harm to the pseudo labeling scheme since these
model predictions with high confidence are likely to produce many
noisy pseudo-labels for selected unlabeled target domain samples,
thereby causing negative effects in model optimization during train-
ing. A well-calibrated model, therefore, is in need. Several recent
work [73,74] has demonstrated that Mixup can play a significant
role in improving the calibration of DNNs. Here, we conduct ex-
periments to explore the effect of Mixup on model calibration. For
simplicity, we only choose ‘‘Baseline1’’ (without Mixup) and ‘‘Base-
line1+SMD+MDM’’(with Mixup) for comparison, both of which have
previously been considered in Section 4.4. As shown in Fig. 6(c), Mixup
makes the ‘‘Baseline1+SMD+MDM’’ model better calibrated as more
sample points lie in or above the red line where the accuracy matches
the confidence. Specifically, on samples at a certain confidence level,
the accuracy of ‘‘Baseline1+SMD+MDM’’ is higher than or at least on
par with that of ‘‘Baseline1’’.

Hyper-parameter Sensitivity to 𝛼, 𝛽, and 𝛾. We conducted case studies
to investigate the sensitivity of the hyper-parameters 𝛼, 𝛽, and 𝛾. The
10
results of the sensitivity analysis are displayed in Fig. 7(a)–(c). We
found that in Fig. 7(a), employing the default value of 𝛼 = 1.0, as
commonly referenced in MixUp operations [43,44], does not yield
optimal performance. This indicates that adjusting the value of 𝛼 can
lead to improved results. Notably, even when using the default 𝛼
value, our method consistently outperforms the state-of-the-art SSDA
baseline, CDAC [6], which highlights its robustness to changes in 𝛼
within this adaptation scenario. Figs. 7(b)–(c) showcase the impact of
the hyper-parameters 𝛽 and 𝛾 on test accuracy. Initially, increasing
the values of 𝛽 and 𝛾 significantly improves test accuracy. However,
further increases gradually diminish accuracy. Nevertheless, the final
test accuracy remains superior to that of the CDAC baseline. Overall,
our method demonstrates low sensitivity to changes in these two hyper-
parameters across a wide range. Notably, the lowest test accuracy is
attained when setting both 𝛽 and 𝛾 to 0. This may result from the
excluding of the loss terms associated with Inter-domain Mixup and
Neighborhood Expansion from the model training process.

Feature Distribution and its Visualization. To gain deeper insights
into the effects of each component within Inter-domain Mixup on
feature distribution alignment across both domains, we employ visu-
alization techniques and quantitative measures. Specifically, we utilize
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Fig. 7. Sensitivity to the hyper-parameters 𝛼, 𝛽, and 𝛾. The experiments are conducted in the adaptation task of ‘‘𝑅 → 𝑆’’ on DomainNet with a 3-shot setup using the ResNet-34
ackbone.
Fig. 8. The variations of Averaged Cluster Centroid Distance of ‘‘IDMNE w/o SDM’’, ‘‘IDMNE w/o MDM’’, and ‘‘IDMNE w/o IDM’’ and IDMNE (our full model) using t-SNE. The
xperiment is performed on the ‘‘𝑅 → 𝑆’’ adaptation task of DomainNet, using the ResNet-34 backbone and the 3-shot setup.
Fig. 9. Feature visualization of MME, CDAC, ‘‘IDMNE w/o IDM’’ and IDMNE (our full model) using t-SNE. The visualization is performed on the ‘‘𝑅 → 𝑆’’ adaptation task of
omainNet, using the ResNet-34 backbone and the 3-shot setup. We randomly select five representative classes with distinct bright colors for their demonstration, namely ‘‘Axe’’
green), ‘‘Bir’’ (blue), ‘‘Fence’’ (orange), ‘‘Shoe’’ (pink), and ‘‘Truck’’ (red). Additionally, grey data points correspond to source samples, while the cluster centroids of various classes
n both the source and target domains are represented with ‘‘square’’ and ‘‘circle’’ markers. .
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he Averaged Cluster Centroid Distance (ACCD) method, as elabo-
ated in Section 4.2, to quantify the impact of Inter-domain Mixup for
omain alignment. Additionally, we conduct feature visualization to
rovide further support for our analysis. The corresponding results are
resented in Fig. 8 and 9.

Firstly, ACCD measures the distance between feature clusters of
he source and target domains for all classes in the dataset, where
maller ACCDs indicate greater alignment of feature clusters between
ource and target domains. To assess this, we compared our full model,
DMNE, with three variants: ‘‘IDMNE w/o SDM’’, ‘‘IDMNE w/o MDM’’,
nd ‘‘IDMNE w/o ID’’. These variants represent degraded versions
f IDMNE by removing sample-level data mixing (denoted by SDM),
anifold-level data mixing (denoted by MDM), or both (denoted by
DM) from the Inter-domain Mixup. As shown in Fig. 8, all four mod-
ls consistently exhibited a gradual decrease in ACCDs during model
raining, indicating source and target clusters across all classes become
loser in the feature space. Notably, ‘‘IDMNE w/o SDM’’, ‘‘IDMNE w/o
DM’’, and IDMNE achieved better feature alignment than ‘‘IDMNE
/o IDM’’, with IDMNE reaching the minimum ACCD value. This sug-
11

ests that the proposed Inter-domain Mixup, containing both SDM and r
DM, whether used individually or in combination (IDM), contributes
o feature alignment across domains, ultimately ensuring the superior
lassification performance of IDMNE.

Furthermore, we performed feature visualization using t-SNE for
DMNE, its variant ‘‘IDMNE w/o IDM’’, and two comparison meth-
ds, MME [5] and CDAC [6]. The results, as illustrated in Fig. 9,
learly demonstrate that IDMNE achieves more compact and aligned
eature distributions for samples across both domains, surpassing the
erformance of MME, CDAC, and ‘‘IDMNE w/o IDM’’. Additionally, in
omparison to ‘‘IDMNE w/o IDM’’, IDMNE exhibits a closer proximity
f feature cluster centroids for both domains, highlighting the effective-
ess of Inter-domain Mixup in promoting cross-domain feature fusion
nd achieving superior fusion performance.

. Conclusion

In this paper, we propose Inter-domain Mixup with Neighborhood
xpansion (IDMNE) for semi-supervised domain adaptation of image
ecognition. IDMNE consists of a well-designed cross-domain feature
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alignment strategy called Inter-domain Mixup, and a practical auxil-
iary scheme called Neighborhood Expansion. Specifically, Inter-domain
Mixup conducts sample-level and manifold-level data mixing of source-
target sample pairs from labeled data. Incorporating augmented train-
ing samples and their label information reduces cross-domain distri-
bution discrepancies by facilitating cross-domain feature alignment
and alleviating label mismatch simultaneously. On the other hand,
Neighborhood Expansion leverages massive high-confidence pseudo-
labeled samples to diversify the label information of the target do-
main. Self-Regularization and Pairwise Approaching are also included
in Neighborhood Expansion for reducing the uncertainty of model
predictions at unlabeled target domain samples. This enables the model
to produce higher probability (confidence) scores for predicted class
labels corresponding to those unlabeled samples of the target do-
main. Finally, Inter-domain Mixup and Neighborhood Expansion are
integrated into an adaptation framework, and extensive experiments
demonstrate that our proposed method achieves considerable accuracy
improvement over existing state-of-the-art algorithms on three com-
monly used benchmark datasets, i.e., DomainNet, Office-Home and
ffice-31.
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